

Geomechanics

LECTURE 1

COURSE INTRODUCTION

PROF. LYESSE LALOUI

Laboratory of soil mechanics - Fall 2024

09.09.2024

Content

- Laboratory of Soil Mechanics
- Goal of the course
- Introduction to geomechanics
- General overview of the program

The Laboratory of Soil Mechanics (LMS) is a world-leading geotechnical research and innovation lab. We specialize in energy geostructures, bio-improved soils, unsaturated geomechanics, and nuclear waste and CO2 storage.

Research and Development

Innovation and Tech Transfer

Education

enerdrape

Research and Development

Innovation and Tech Transfer

Education

Research and Development

Innovation and Tech Transfer

Education

LMS Courses

https://www.epfl.ch/labs/lms/educational-programs/

LMS Projects

https://www.epfl.ch/labs/lms/master-thesis-at-lms/

Energy Geostructures CO2 Storage

Nuclear Waste Storage Climate change impact

Bio-Improved soils Project in industry

Propose your own project!

Goal of the course

Goal of the course

- The course aims at providing future civil engineers with the needed knowledge on geomechanics for professional practice
- Be able to answer the following questions:
 - What are geomaterials?
 - Why do we study geomaterials?
 - How complex is the behaviour of geomaterials?

What are geomaterials?

> Any material with a geological origin

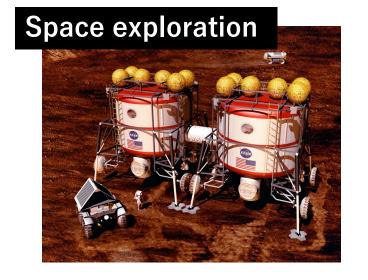
Multiphasic Non-homogeneous Anisotropic

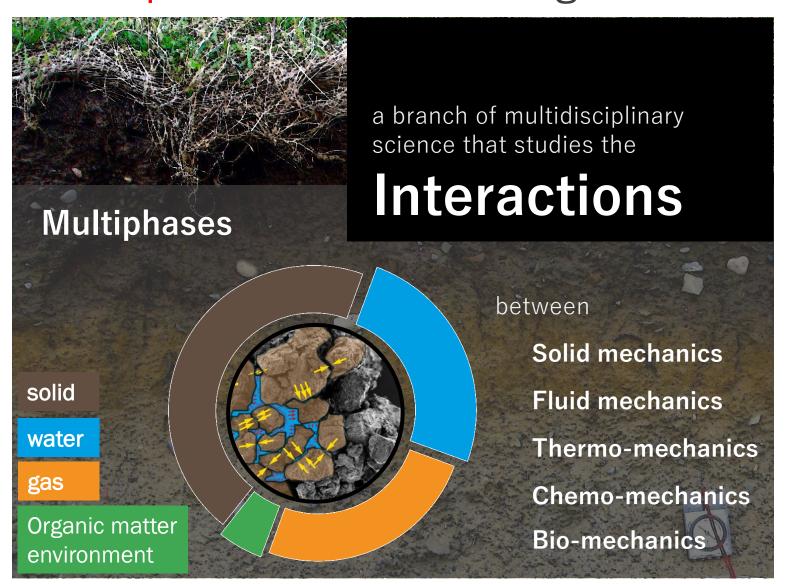
In their natural state

- Foundations on soils
- Tunnel excavation in rocks
- Radioactive waste disposal in shales

Engineered materials

- Concrete foundations
- Jet grouted columns
- Bio-cemented soil

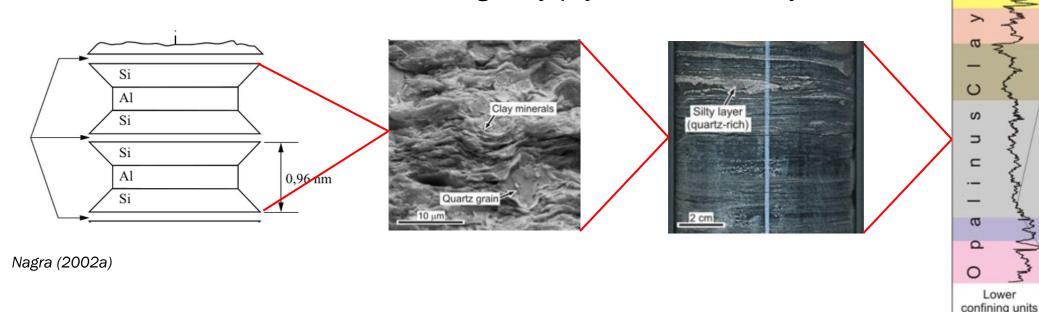

Why do we study geomaterials?



How complex is the behaviour of geomaterials?

Multiphasic porous media

†
Multi-physical processes



confining units

How complex is the behaviour of geomaterials?

Multiscale in porous media

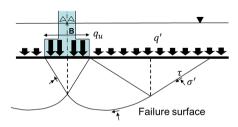
Each scale has its own characteristics, heterogeneity, physics and uncertainty

Which scale is the most important?

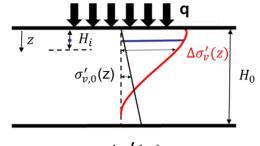
→ It depends on the problem!

What are you looking for?
What are your ressources (data, computational)?
Do we know the physics?

Introduction to geomechanics


Introduction

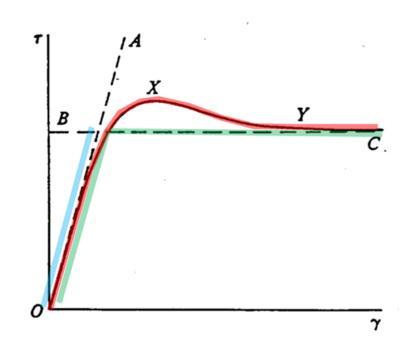
Constitutive modelling in geomechanics


- In geotechnics, soil is more often treated as an element beside the structural elements and (usually) analytical methods are proposed to solve geotechnical problems
- In Geomechanics, geomaterials, particularly soils, are viewed as engineering materials
- Stress-strain behaviour of these materials should be modelled in the analysis.

Bearing capacity

$$q_u = \frac{1}{2} \gamma' B N_{\gamma} + c' N_c + q' N_q$$

Settlement

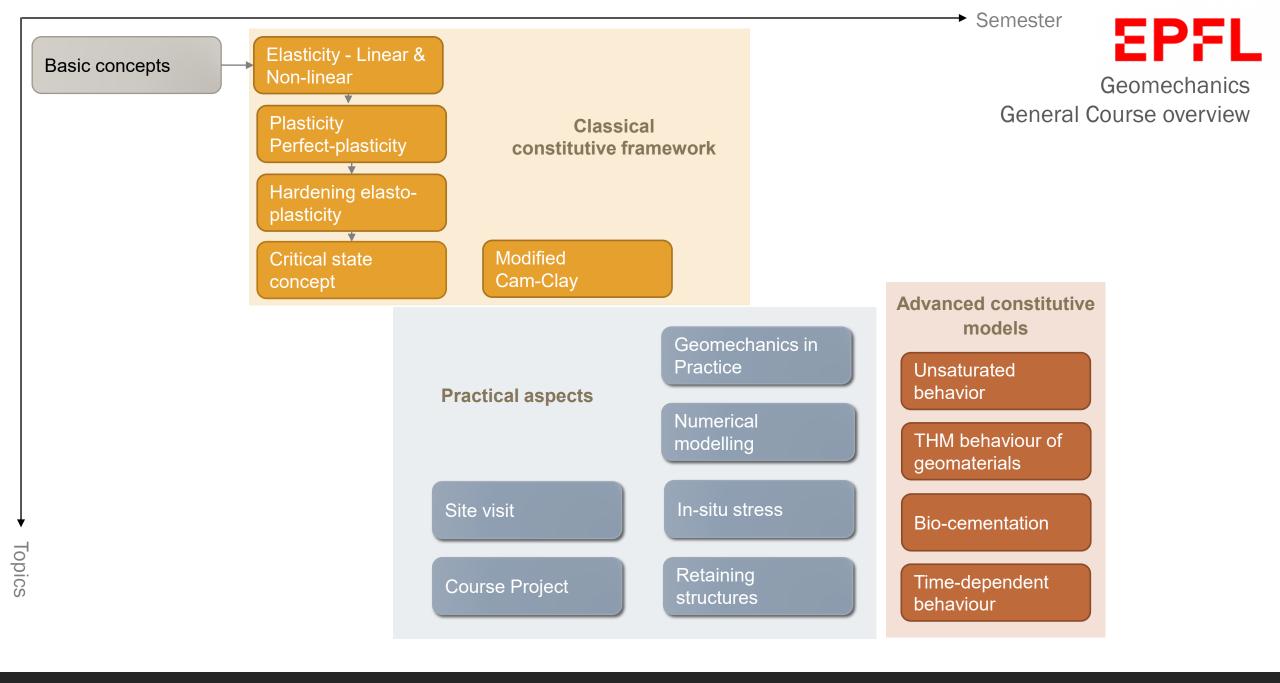

$$s_i = \frac{\Delta \sigma_v'(z_i)}{E_{oed}(z_i)} H_i$$

Introduction

Theory of constitutive equations

- A constitutive law or model represents a mathematical model that describes our idea of the behaviour of a material.
- A constitutive equation is a mathematical model that can permit reproduction of the observed response of a continuous medium.
- Common constitutive laws used in study of soil as a multiphase mixture:
 - State of fluid
 - Flow (Darcy)
 - Mechanical constitutive law: Stress-strain relation for solid

Introduction



Steps in development of constitutive law

- Mathematical formulation
- Identification of significant parameters
- Determination of parameters from laboratory, and verification that can involve the following two additional steps:
 - Prediction of observed data from which the parameters were determined and of other tests at different conditions
 - Comparison between predictions after implementation of constitutive law and observations or solutions for boundary values problems

General overview of the program

Course details

Course sessions

➤ Theory sessions – Monday, 11:15 – 14:00

<u>Lecturers</u>: Lyesse Laloui (LL), Alessio Ferrari (AF)

Class room: GR A3 30

> Exercise sessions and workshops - Thursday, 17:15 - 19:00 (see program for more details)

Assistants: Ziad Sahlab (ZS), Mathilde Métral (MM), Alessandro Parziale (AP)

Class rooms: GC B3 30

Course details

Evaluation

- Final exam (written): 60% of the final mark
- ➤ Mid-term exam (written): 20% of the final mark
- Project report: 20% of the final mark

Mid-term and Final exam

A formulary associated with each lecture will be created; a collection of formularies will be provided during the written exams

Project report

- The project (groups of 3 students), has to be submitted by Friday 20th December 2024 on Ed Discussion as "<u>private</u>" in the project category
 - Within the first 2 weeks, write an email at <u>ziad.sahlab@epfl.ch</u> with your group of 3, or if you are looking for a group

Course details

Communication:

➤ This class is on Ed Ed Discussion forum – Geomechanics – CIVIL-402

Exercise sessions:

- Students should bring their laptops during the exercise sessions
- Exercise session will be interactive between the TAs and the students

Have an excellent semester!

